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INTRODUCTION 

 

North American Stainless’ Hot Mill is a highly-automated rolling facility with a data collection architecture that 

stores thousands of data points for each coil produced into their MES databases. A predictive algorithm that 

calculates the likelihood of certain yield defect before visual inspection takes place was developed using modern 

Machine Learning (ML) techniques, leveraging the high quality and availability of process data. The 

implementation process uncovered a number of key facts that helped the company to understand better the nature 

of the problems. 

 

MOTIVATION 

 

In order to produce high quality products, steel plants implement visual or camera-based quality inspections in key 

points during the process. The inspection results are used to determine if a product is good or if it must be discarded 

or reprocessed thus affecting the yield of the line.  Since the defects are of heterogeneous variety, the inspectors 

typically assign a defect code to the whole product or to a part of it and that information is used by process engineers 

to track the source of the problem in order to fix it for future products.  

 

Due to the complexity of the task and the requirement of highly trained personnel, the visual detection procedure 

is prone to subjective appraisals and misclassifications. This very process of automatically detecting the visual 

manifestation of defects is being actively researched [1] [2] and there are several competing commercial products 

that use high definition images and pattern recognition algorithms. 

 

In our case, instead of analyzing the images, the algorithm uses process knowledge [3] to pre-qualify the products, 

providing a numeric value that indicates the likelihood of certain types of yield problems. This information can 

improve the detection rates by focusing the inspector or inspection system on certain products and patterns.  

 

The pre-qualification score can also be used to perform additional screenings and other measures such as 

preventive holds. Furthermore, the implementation of such system uncovers a list of process variables that are 

highly correlated with the yield defects, showing a path for the ultimate goal of fixing them for all future products.  

 

 

PROJECTS STEPS 

 

In order to obtain a predictive model using ML the following steps were followed: 

 

Dataset Extraction: Build a tool to extract all possible information from several data sources. 

Define the Goal: In order to select the best ML model and its parameters we define a metric by which 

the models will be compared. 

Model / Feature Selection:  Perform several iterations with different models and different sets of features 

and compare the selected metric to find a winner.  

Evaluation: The results are evaluated in terms of predictive power  
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MACHINE LEARNING  

 

Machine Learning (ML) is a type of artificial intelligence that provides computers with the ability to predict values 

without being explicitly programmed, this ability is usually achieved by exposing the algorithm to large amounts 

of data called samples. 

 

ML algorithms can be divided into supervised and unsupervised. A supervised algorithm requires a number of 

labeled samples, the labels being the values or categories that the algorithm is trying to predict on the future 

unlabeled samples. In our case, the historic database of coil inspections can be used as a labeled dataset. 

 

Among the supervised learning methods there are two main categories: Classification and Regression, and 

classification algorithms can be divided further into binary and multiclass classification.  

 

In this work we will try to detect if an entire coil belongs or not to a category so it constitutes a binary decision, 

each sample will represent a coil and the label will represent the category of the whole coil. 

 

In our case the label is called HasDefect and it can be defined as “Coil has a particular yield defect” 
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Figure 1 - Different types of Machine Learning algorithms.  

  



 

 

DEFINING THE DATASET 

 

We define the dataset as the collection of labeled samples. The accuracy of any ML algorithm depends on the 

quality of the dataset, in our case this means that we need:  

 

- A large number of coils 

- A consistent detection of the problem throughout the dataset  

- A large and relevant number of process variables assigned to each coil  

 

Features 

The measurements / process variables associated with each coil are called features. There are two basic types of 

features that require different treatments: Numeric and Categorical. Examples of numeric features are: Down-

coiler Temperature and Average Thickness. Examples of Categorical features are: Steel Grade and Hot Mill Recipe 

ID.  

 

 

Missing Values 

All the features are acquired using automation systems and are stored in SQL databases. After a close inspection 

of the data, some coils have NULL values in several features. NULL values cannot be fed to ML algorithms so 

there are a few options: either remove the sample or provide replacement values.  

 

In some cases, the NULL values represent a valid reason for example “Average Thickness of Pass 6” for coils that 

only have 5 passes, in those cases we replaced the NULL values by zeros. 

 

In a minority of cases the NULL values were due to other factors and the samples were discarded. 

 

 

Feature Extraction for trends 

The Hot Mill has a large database that contains trends from measurement devices such as thickness gauges and 

pyrometers, those trends are typically sampled by length or length-adjusted.  Each trend can have more than 

100,000 data points so is not possible to feed them directly to the algorithm. A usual procedure is to perform 

Feature Extraction techniques, i.e. calculations based on raw variables. In this case, we divided the coils in three 

sections: head, body and tail and obtained aggregate calculations such as average, standard deviation, minimum 

and maximum for each section and for each measurement.  
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Figure 2- Extracted features for one trend and for the body of a coil 

  

Data Sources 

During the model definition, all existing data sources must be considered. In this case, we prepared the data 

extraction not only to detect this particular yield defect but to be used in the future for other labels or even for 

performing regression analysis. The following is a list of data sources that we imported into the ML environment. 

 

Slab Chemistry 

Slab Dimension and Main Features 

Roughing Mill Setup 



Roughing Mill Passes 

Roughing Mill Trends per Pass 

Finishing Mill Setup 

Finishing Mill Passes 

Finishing Mill Trends per Pass 

Down coiler Trends 

Crown Measurements per Pass 

Inspection Data 

 

The total count of features is around 1600 and the number of coils initially analyzed was above 60,000. 

 

Time Filtered 

Due to changes on the way the inspectors qualify this particular yield defect around January 2016, we decided to 

use only the coils produced after the change, that reduced the number of coils to a figure close to 25,000. 

Incidentally this operative practice change was independently “discovered” by the algorithm as it was stubbornly 

detecting Slab ID (a simple index number) as an informative feature. 

 

 

 

 

IMBALANCED DATASET 

 

As mentioned above, our label is based on the possession of a particular yield defect. Luckily for the plant the vast 

majority of coils do not have that defect so our dataset is very imbalanced, meaning that there are much more 

samples on one category (HasDefect=0) than on the other (HasDefect=1). In ML imbalanced datasets might yield 

to unstable models or plain wrong predictions.  We studied three different approaches to solve this problem 

 

Subsampling: In this approach, we filtered the dataset to obtain all defective coils and a subsample of 

the good coils, yielding a 50/50 proportion between the two classes. This approach is valid but the 

downside is that most of the samples end up not being used so their information is discarded. 

 

SMOTE: This data-preparation algorithm creates artificial samples of the underrepresented class 

(HasDefect=1) increasing the proportion of them to avoid the problem. It works very well in our tests. [4] 

 

Weighted samples: Some models, in particular Logistic Regression, allow the definition of a weight for 

each sample to penalize errors in the minority class more than the errors on the majority class. We tested 

this on LR and SVM models with satisfactory results.  

 

  



 

DEFINING THE GOAL 

 

 

When defining a model, one needs to define a scalar numeric goal to maximize or minimize. Classification 

problems requires a deliberate analysis to find the proper goal because the models can be evaluated using several 

(sometimes conflicting) metrics.  

 

Confusion Matrix 

A good start for understanding the metrics of any binary classification model is the confusion matrix 
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Figure 3 - Confusion Matrix 

 

The four values TP, FN, FP and TN are counts of samples. A perfect model will have FP=FN=0.   

In our case: 

TP (True Positives): Coils that have the defect and were flagged. AKA Spotted 

TN (True Negatives): Coils that do not have the defect and were not flagged AKA Regular Coils 

FP (False Positives): Coils that do not have the defect and were flagged. AKA False alarms  

FN (False Negatives): Coils that have the defect and were not flagged. AKA Missed. 

 

The following diagram shows a geometric interpretation of a binary classification model reduced to a familiar two-

dimensional space.  The picture shows the 4 different outcomes for a sample. 
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Figure 4 - Geometric interpretation of classification 

 

Binary Classification Metrics 

Using the confusion matrix concepts, there are 3 quotients that can be used as metrics: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    ,  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,   𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

In our case we have to consider two important conditions: 

We need a good recall rate (i.e. catch the majority of defects) ideally > 90% 

We need a good accuracy rate (i.e. avoid flagging too many good coils) ideally > 90% 

  



 

Some models like Logistic Regression and SVM allow selecting a model with a parameter that allows playing 

with these two metrics until you find a suitable point where both conditions are met. By sweeping that parameter 

from 0 to 100% a curve called Receiver Operating Characteristic (ROC) is built 

 

 
 

Figure 5 - Receiver Operating Characteristic 

 

We decided to use the area under that curve (ROC-AUC) as our metric to optimize the model, a large AUC implies 

a model with higher discriminative power, the model parameter can then be used to tune the trade-off between 

acceptable recall and accuracy rates. 

 

 

 

IMPLEMENTATION 

 

Software Tools and Algorithms tested 

For the development of the models we used a set of tools that included Microsoft Azure ML Studio cloud 

computing and Python programming language with Pandas and SciKit open source libraries. 

 

We performed several iterations with different models, different parameters and feature sets.  Results are shown 

for Logistic Regression, Support Vector Machines, Boosted Decision Trees and Naïve Bayes. 

  

For each model, we optimized their parameters and used Cross Validation (CV) to assure the models will perform 

well when exposed to new data points.  

 

 

Minimizing the feature set 

The original dataset has more than 1600 features and it was expected that most of them carry no information 

about a particular defect.  We tried different techniques to select a shorter feature set. Having a short feature set 

has many implications: improves training speed, improves slightly the AUC metric and more importantly gives 

process engineers insights of the nature of the defect so they can prevent it in the future. 

 

The method that yielded best results is called “Forward Greedy Selection” [5] and consists in adding one feature 

at a time, performing several training/scoring loops and finally keeping the feature that maximizes the AUC 

metric. The process is repeated, adding one feature at each stage until the AUC metric does not increase 

anymore. The results shown in the following section were obtained with a set of 9 features 

 

 

 



BEST RESULTS 

 

 

Once the feature set was selected, successive tests were running using different models. 

 

In order to account for the imbalance of our set we used SMOTE and found out that 300% as a parameters works 

out very well 

 

Due to the relative abundance of data we run them, somewhat redundantly, through a 10-fold Cross Validation 

and score the results with a 20% Test.  

 

For the best performing models we then tuned the parameter (Threshold) to reach acceptable Accuracy and Recall 

scores. 

 

The following is a summary of the final trials: 

 

 
Figure 6 – AUC score comparison between several algorithms and parameters 

In this particular case, all algorithms yielded similar results and very strong cross validation scores. The following 

is the Receiving Operation Curve for the TC-LR algorithm. 

 

 
 

Figure 7 - Evaluation of LR algorithm 



 

This result shows that: 

- The algorithm was trained with 80% of the samples and tested with the remaining 20% 

- The algorithm cross validation scores indicate it will perform well on new coils  

- From 29 defective coils the algorithm identified 27 of them: 93% correct 

- From 2535 non-defective coils, the algorithm incorrectly flagged 198:  92% correct 

 

 

CONCLUSIONS 

 

The goal of identifying a good predictor function for a particular yield problem was achieved, in the process we 

developed a data extraction system that can be used for other Machine Learning projects, we implemented a 

procedure to select a short but performant feature set and discover new ways of exploring causal relationships 

between defects and process variables.   

 

Regarding the future direction of this study: We are already applying the same data set and concepts to other sets 

of problems. Another line of action is to take advantage that most of the features are derived from length-adjusted 

trends so it is possible to increase the granularity of the dataset working with sections of coils instead of complete 

coils which would yield a better understanding of the physical causes of the labels.  
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